Synthesis of a Congener of the Cyclohexadepsipeptide Antibiotic Monamycin

By CEDRIC H. HASSALL, WILLIAM H. JOHNSON, and COLIN J. THEOBALD (Roche Products Ltd., Welwyn Garden City, Hertfordshire AL7 3AY)

Summary A congener of the cyclohexadepsipeptide antibiotic, monamycin, has been synthesised; it contains residues of D-Val, L-isoleucic acid, D-Pip, L-Pip, NMe-D-Leu, and L-Pro and has antibacterial activity.

THE structures (1) of the naturally occurring members of the monamycin family of cyclodepsipeptide antibiotics have been determined by degradation and the use of ¹H n.m.r. and mass spectrometry.^{1a,b} We have undertaken to confirm the structure of this cyclodepsipeptide system by synthesis. The availability of this procedure for the preparation of monomycin congeners makes it possible to investigate structure-activity relationships in the series, through

the preparation of further analogues including compounds incorporating synthetic (3S,5S)-hydroxypiperazic acid.²

The Scheme, which is outlined for the synthesis of deoxymonamycin-B₃, involves the coupling of t-butyloxycarbonyl-D-valyl-L-isoleucic acid (3) with the t-butyl ester of the bisbenzyloxycarbonyl-protected tetrapeptide (4), followed by removal of protecting groups and cyclisation of the linear hexadepsipeptide (6) with N-hydroxysuccinimide and dicyclohexylcarbodi-imide. This yielded the crystalline congener, $C_{33}H_{56}N_7O_7$, in 40% yield; it was fully characterised by ¹H and ¹³C n.m.r. spectroscopy, elemental and amino-acid analyses, and mass spectrometry as the cyclodepsipeptide corresponding to the structure (2).

SCHEME. An outline for the synthesis of deoxymonamycin-B₃ (2). Pip = Hexahydropiperazic acid; Ila = isoleucic acid [Me-CH₂CH₂CH(Me)CH(OH)CO₂H]; Z = benzyloxycarbonyl-; BOC = t-butyloxycarbonyl-; TFA = trifluoroacetyl-; ONB = 4-nitrobenzyl-.

The synthesis of the protected tetrapeptide (5) was through coupling the t-butyl ester of N-methyl-D-Leu-L-Pro at low temperature with the acid chloride of the dipeptide (7); this was prepared from the corresponding derivatives of the respective enantiomers obtained by resolving 2-Nbenzyloxycarbonyl-(R,S)-piperazic acid into (R)(D) and (S)(L) forms with (+)- and (-)-ephedrine, respectively.³ Piperazic acid was prepared by the published route;^{1a} reaction with benzyl chloroformate yielded the 2-N-benzyloxycarbonyl-(R,S)-piperazic acid exclusively.

The synthetic material (2) has antibacterial activity against *Staphylococcus aureus* similar to monamycin I⁴ but this is only 25% of the activity of the more active congener, monamycin $D_{1}^{.5}$

¹ (a) K. Bevan, J. S. Davies, C. H. Hassall, R. B. Morton, and D. A. S. Phillips, *J. Chem. Soc.* (C), 1971, 514; (b) C. H. Hassall, Y. Ogihara, and W. A. Thomas, *ibid.*, p. 522; C. H. Hassall, R. B. Morton, Y. Ogihara, and D. A. S. Phillips, *ibid.*, p. 526. ² C. H. Hassall and K. L. Ramachandran, *Heterocycles*, in the press.

³ K. Oki, K. Suzuki, S. Tuchida, T. Saito, and H. Kotake, Bull. Chem. Soc. Japan, 1970, 43, 2554.

⁴ M. J. Hall, personal communication.

⁶ M. J. Hall, B. O. Handford, C. H. Hassall, D. A. S. Phillips, and A. V. Rees, Antimicrob. and Chemother., 1973, 3, 380.